\ D 4

W Willow Technology

MQSeries® Client for MPE,/iX™
Version 2-01

MQSeries Clents

MQSERIES CLIENT FOR MPE /IX

MQSeries Clients Addendum

Copyright © 1999,2000 Willow Techndlogy, Inc.
Portions Copyright © 1994-1998, IBM Corp.
Phone 408.377.7292 « Fax 408.377.7293
emal: info@w illow tech.com
www w illow tech.com

The following terms are trademarks or registered of the IBM Corporation in the United States or other
countries or both:

MQSeries

MQ

AIX

AS /400
MVS/ESA

RISC System/6000
0S/2

OS§/400

UNIX isa registered trademark in the United States and other countries licensed exclusively through X/Open
Company, Ltd.

Microsoft, Windows and the Windows 95 logo are trademarks or registered trademarks of Microsoft
Corporation.

Hewlett-Packard and MPE/iX are tradematks or registered trademarks of Hewlett-Packard, Inc.
Willow Technology and the Willow logo are trademarks of Willow Technology, Inc.

Other company, product, and setvice names, may be trademarks or setvice marks of others.

Table of Contents

TVAACHIATES u.cnnnnneroossnnerioossunioosesnsiossssssriossssssssssssssssssssssssesssssssssssssssssssssssssssssssasess ii
Support for MQSeries Client for MPE/iX.......ccciiiiiiiiiiiniriimmnnnnnnenneiiiisiicccinnnnne 1
ComMMUNICATIONMS ceiiireeeruneiiiiiiiiietttiiiiiiitieettttuiicieetetestseesssiesseesssssessssssssessssssnses 2

MQSeries Client for MPE/iX: hardware and software required................ceeueeeun. 3
Machine requUIremMentscccvvceeiriernirreemnnecssiennnreesssess 3
Operating System requiremMentS......cccciireemuneersisnerrreennneesssssceseesssssesssssssssessssseses 3
Compilers for MQSeries applications on MPE/iX clients.....cccccceeriiiiiiciiiinnnn. 3
Installing Software From DAT Tape ..cccccrrrrrreemenrenneeescsssssssssscsnennenessesssssssssseses 4
The verification SCENATIO....uueeeeeeeeeeeietetetetititttttisssssssssssssssssssens 6
SECUTILY wervireirrrrnunncrsisnniirremmneesssssssinrsssssesss 6
Setting UP the SErVeI....ucciiiiiiiiiimmmeiiiiiinniinemmunesisisseinresssseesssssssssssssssssssssssssssssss 6
Setting up the MQSeries cClient......ccoirieeuuiiiiiiirreennciiicnniiennnecsssscnnnesmnsecssssssseeses 6
Define a client-connection channel, using MQSERVER.........cccccceerrrrruneeiacens 7
Putting a message on the queue (POSIX) .ccccirrrrmmureiriiiinnnninreennneeessssssserneesennes 7
Getting the message from the queue (POSIX)....cvveiiiiiinirrrennnneessisecennrenennnees 8
Putting a message on the queue (Native Mode).....ccoeerrrrrrvennreeeeessssesernereeeennnnee 8
Getting the message from the queue (Native Mode)......ccccerrreeeeeiccreerrreenannnnes 9
Ending verification.....cccvvveiiiiiniimmmueiiiiicninrnnnnecissnnniresmeesssssnnrsssssesssssssssssssssssssses 9
AUthentication...ccccceeeiiiiiiiiiieiiieiiiiieiiieiiiiieieieeiieiieeeeieieeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeene 11
User ID and PasSWOId.....eeeccieeeiiieeemnnesssssssinessmssesssssssssssssssssssssssssssssssssesssssssssssss 11

POSIX IMOG@ ...ttt 11
DAL A1 (o T (<Pt 11
g N o e 1) 11 1) 12
MOQOCHLLIB.....cciotiiiiinneetiiiiesssassssssssos 14
o0 1) 15
INAEIVE IMOAE: ..t ettt 15
1\Y (0100 = 0 D 1. N S 15
PO S X e e 15
NAIVE MOG@: ettt et 15

POSTXC . 16
NALVE MOA@: ..ot 16
17 0 L O G5 U) PPN 16
PO S K e 16
INALIVE MOAE: ...t 16
Creating one definition on the MPE/iX client and the other on the server
... 18
(014 (TS < PN 18
On the MQSEIIEs CHIENT.uii ittt e e e e e e e e e e e eanaes 18
POSTXC .t 18
NALIVE MOG@: ..ot 18
0 19
INALIVE MOAE: ...t 19
Creating both definitions on the Server..........cccriiermmeciiiicinninnennecisccennnenens 20
(014 (TS <) N 20
Defining the Server CONMECTION.uuiit ittt 20
Defining the client CONNECHIONuiiuuiiiii i 20
On the MQSEries CHENT.iuiiii e 21
0 21
INALEIVE MOAE: ... e 21
Limiting the size of a MeESSAZE....cccvrrrrrrmreiiiiiiiiirrrrenciiiciiniinrenucsscesenneeesnneenes 23
Choosing client or server coded character set identifier (CCSID)............. 23
POSIX: ..ol 23
INAEIVE IMOAE: . ettt ettt et et 23
Controlling application in an MPE/iX environment.......ccccceeeeeuneneniiicirnnnnnnes 24
Designing applications ...cceeeeeeeeiiiiiiiniemmmeiiiiiiniieennuuiiccienieeeneneecccesneeessseenes 24
Using MOINQ .coouuuuiiiiiiiimttiiiiiiintittneiiieinteeeemeeiiiecsseeesssssesssssssssssssssssssssssssssss 24
Using syncpoint coordinationcccooeeeeeeeiiiiinieenneiiiiiineennneiciinneeeneecceeeeeens 24
Triggering in the MPE/iX client environment..........ccccooveeeeeemnnenneiiiccceinnnnnnens 24
Running applications in the MQSeries environment......ccccccceereeennecereennnn. 26
(04172010 0 Tc] D € L N 27
Linking C applications with the MQSeries client code..............ccceeeeeeuun.... 27
PO S X e 27
NALVE MOG@: ..t 27
Using MQSERVER......ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieiiieieieieieieeeeeeeeeeeeeeeneseeeeeseseseeens 29
Using DEFINE CHANNELccccctttiiiiiiiiiiiiiiiiiiiiiiieiiiieieieieieieieeeieieeeeeieeeeeeeseseseeens 29
Role of the client channel definition table......cccccoviiiiiiiiiiiiiiiiiiiiiiiiiiiieiinennnnns 29

Error messages with MQSeries clients......cccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeneeeeeeeeenes 30

PREPARING FOR INSTALLATION

Chapter

Preparing for Installation

The information in this manual provides information specific to
the HP3000 MPE /iX MQI client, and is intended to be read
in conjunction with the IBM MQSeries Clients reference; IBNM
publication number SC33-1632-xx.

support for MPE/iX clients only. You can find Hardware and Softwate
requirements for other supported client platforms in the MQSeries (ients
reference, IBM publication number SC33-1632-xx.

T his chapter details the platform support and the communications protocol

For your server platform hardware and software requirements, see the M(QSeries
System Management Guide for your platform, or the MQSeties for MVS/ESA
Program Directory.

For capacity planning information, see the MQSeries Planning Guide.

Support for MQSeries Client for MPEAX

Any of the MQSeries products listed below is installed as a Base product and Server
(Base product and Distributed Queuing without CICS feature, and Client Attachment
feature on MQSeties for MVS/ESA). These M(QSeries products can accept
connections from the MQSeties Qient for MPE /iX, subject to differencesin coded
character set identifier (CCSID) and communications protocol.

Note

Make sure that code converson from the CCSID of the MPE /iX client
is supported by the setver. See the Language support tables in the
MQSeries Application Programming Reference.

PREPARING FOR INSTALLATION

These MQSeries products:

MQSeries for SCO OpenServer Version 2.x or later
MQSeries for UnixWare Version 2.x or later
MQSeries for IRIX Version 2.x or later
MQSeries for AIX Version 2.2.1 or later
MQSeries for AT&T GIS UNIX Version 2.2
MQSeries for HP-UX Version 2.2.1 or later
MQSeries for OS/2 Version 2.0.1 or later
MQSeries for Windows NT Version 2.0 or later
MQSeries for MVS/ESA Version 1 Release 1.4 or later
MQSeries for OS/400 Version 3 Release 2 or later
MQSeries for SINIX and DC/OSx Version 2.2
MQSeries for SunOS Version 2.2
MQSeries for Sun Solaris Version 2.2 or later

can accept connection from an MQSeties Client for MPE /iX.

Communications

TCP/1IP is the only transmission protocol suppotted by the MQSeties Client for
MPE/iX software.

PREPARING FOR INSTALLATION

Machine requirements

An MQSeries client can run on any computer runninga suppotted version of the
HP3000 MPE /iX operating system and which has suffident random access memorty
(RAM) and disk storage to meet the combined requirements of the programming
prerequisites, the MQSeries client code, the access methods and the application

programs.

Operating System requirements
The following MPE /iX versions are supported:

e MPE/iX5.5 with PowerPatch 7 or later

Compilers for MQSeries applications on MPE/iX clients
The following compilers have been tested and are supported for COBOL and C
bindings:

Native Mode:
e HP COBOL I1I/iX programs using the 1985 COBOL (COB85) Compiler

POSIX:

e C programs using the ¢89 Compiler

VERIFYING THE INSTALLATION

Chapter

Installing the MQSeries Client for
MPE/X

The MQSeries Client for MPE/iXis developed and supported by Willow Technology under license from IBM.
It is licensed by for use on a single computer, and is distributed on DAT Tape.

Before installing the software, please consult the hard copy “README” and ‘Release Notes” included with
the software package for the latest information, known problems and fixes.

Installing Software From DAT Tape
1. Mount the product tape on the HP3000 DAT drive.

2.

3.

Logon as MANAGER.SYS.

Restore all files on the product tape. For example:

file tdev=7

:restore *t;@.@.(@;show;create;creator

See the README.PUB.MQM for a description of the MPE/iX domain components, and
/MQM/PUB/opt/mgm/README and /MQM/PUB/opt/mqgm/Release_Notes for details on
POSIX components.

Remove the product tape from the DAT drive.

Done!

VERIFYING THE INSTALLATION

Chapter

Verifying the installation

The supplied samples can be used to verify that the installation has been completed
successfully and that the communication link is working

This chapter gives instructions on how to verify that an MQSeries Qient for MPE/iX
client has been installed correctly, by guiding you through the following tasks

1. Settingup the MQSeries client
2. Puttinga message on the queue
3. Getting the message from the queue.

Instruction for setting up the MQSeries server are described in Chapter 4 of the
MQSeries Clients reference.

These instructions assume that:
e The full MQSeries product has been installed ona server:

The Base Product and Distributed Queuing without CICS, and the Client
Attachment feature on MVS/ESA.

The full MQSeries for OS/400 product on OS /400 platforms.
The Base Product and Server on other platforms.

e The MQSeries Client for MPE/iX softwate and supplied files have been
installed on the HP3000 system to be used.

TCP/IP is the only supported transmission protocol. It isassumed that you have
TCP/IP configured on the server and the MQSeries client machines, and that it has
been initialized on both the machines.

VERIFYING THE INSTALLATION

Note

Compiled POSIX C samples amgsputc and amqsgetc are included in the
“/MQM /PUB/opt/ mqm/samp”.folder.

Compiled Native Mode COBOL samples PMQOPUTO and
PMQOGETO ate in the COBOL.MQM group

The verification scenario

The following example assumes you have created a queue manager called
queue.manager.1 (on platforms other than MVS/ESA which hasa 4-character
restriction on queue manager names), alocal queue called QUEUEL, and a server-
connection channel called CHANNELT1 on the server. It showshow to create the
client-connection channel on the MQSeries (ient for MPE /iX client workstation;
and how to use the sample programs to put a message onto a queue, and then get the
message from the queue.

Note

MQSeries object definitions are case-sensitive. You must type the
examples exactly as shown.

Security

The verification example does not address any client security issues. See Chapter 5,
“Setting up MQSeries Client for MPE/iX security” for details if you are concerned
with M(Series dient security issues.

Setting up the server
Refer to Chapter 4, “Verifying the Installation” of the MQSeries Clients base reference
manual for details on setting up you MQSeries server environment.

Setting up the MQSeries client

When an MQSeties application is run on the MQSeries Client for MPE /iX, the
information it requires is the name of the MQI channel, the communication type, and
the address of the server to be used. You provide this by defininga dient-connection
channel. 'This example uses the MQSERVER environment variable to do this - the
simplest way, although not the only one. The nmame used must be same as the name
used for the server-connection channel defined on the server.

Before statting, ping the server-address (whete setver-address is the TCP/IP
hostname of the setver) to confirm that your MQQSeries dient and server TCP/IP

VERIFYING THE INSTALLATION

sessions have beeninitialized. You can use the network address, in the format n.n.n.n,
in the pinginstead of the hostname. If the ping fails, check that your TCP/IP
software is correctly configured and operational.

Define a client-connection channel, using MQSERVER

Create a client-connection channel by setting the MQSERVER environment variable.
For applications linked with the POSLX librasies (libmgqicg.a or libmgicbga), enter the
following command from the POSIX shell:

export MQSERVER=CHANNELI1/TCP /setver-address(port)

For applications linked with the Native Mode library (COBMQXL), enter the
following command:

:setvat MQSERVER “CHANNEL1/TCP /server-address(port)”

where setver-address is the TCP/IP hostname of the server, port is optional and is
the TCP/IP port number the server is listening on. The default pott number is 1414 if
no other was specified on the Start Listener or inetd commands on the server.

Imporant Note

The second parameter, TCP, is case sensitive. It MUST be entered in
upper case!

Putting a message on the queue (POSIX)
On the MQSeries client workstation, put a message on the queue using the amqsputc

sample program:

1. Change to the directory containing the sample programs, and then enter
the following command:

amgsputc QUEUE1 qmgr

where qmgr is the name of the queue manager on the server
(queue.manager.] in the non-MVS/ESA example above).

2. The following message is displayed:

Sample AMQSPUTO start
target name is QUEUEL1

3. Type some message text and then press Enter twice.

4. The following message is displayed in the output window:

VERIFYING THE INSTALLATION

5.

Sample AMQSPUTO end

The message is now on the queue.

Getting the message from the queue (POSIX)
On the MQSeries client workstation, get the message from the queue using the
amgsgetc sample program:

1.

2.

Change to the directory containing the sample programs, and then enter
the following command:

amgsgetc QUEUE1 qmgr

where qmgr is the name of the queue manager on the server
(queue.manager.] in the non-MVS/ESA example above).

The message on the queue is displayed and then deleted from the queue.

Putting a message on the queue (Native Mode)
On the MQSeries client workstation, put a message on the queue using the amqgsputc
sample program:

1.

Change to the group containing the sample COBOL programs, and then
enter the following command:

: RUN PM QOPUTO;XL="COBM QXL”
The following message is displayed:

AMQOPUTO start
Please enter the name of the target queue

The following message will be displayed on the HP3000 console:

?hh:mm/#Snnn/<nn>/Awaiting REPLY for COBOL ACCEPT

statement. (M AX CHARS.=31)? Where <nn> is the message number.

4.

At the console, enter the queue name using the <Control-A>REPLY
command:

=REPLY <nn>,QUEUEI1

The client workstation will display the following message:

Please enter the message(s)

Type some message text and then press Enter twice.

VERIFYING THE INSTALLATION

7. 'The following message is displayed in the output window:
AMQOPUTO end
END OF PROGRAM

8. The message is now on the queue.

Getting the message from the queue (Native Mode)
On the MQSeries client workstation, get the message from the queue using the
amgsgetc sample program:

1. Change to the group containing the sample COBOL programs, and then
enter the following command:

:RUN PM QOGET0;XL="COBM QXL”
2. The following message is displayed:
AMQOGETO start

Please enter the name of the source queue

3. The following message will be displayed on the HP3000 console:

?hh:mm/#Snnn/<nn>/Awaiting REPLY for COBOL ACCEPT
statement. (MAX CHARS.=31)? Where <nn> is the message number.

4. Atthe console, enter the queue name usingthe <Control-A>REPLY
command:

=REPLY <nn>QUEUE1

5. The message on the queue isdisplayed and then deleted from the queue.

6. After adelay of approximately 15 seconds, th e following messages are
displayed:

nomore messages
AMQOGETO end
END OF PROGAM

Ending verification
The verification process is now complete.

TCP/IP CONFIGURATION

Chapter

Configuration
MQSeries Client for MPE/iX software only suppotts TCP/IP. All that is required is
that TCP/IP isinitialized on the MPE/iX system.

Refer to your MQSeties documentation for TCP/IP configuration and initialization
requirements for your MQSeries server.

10

SECURITY

Chapter

Setting up MQSeries
Client for MPE/AX security

Youmust consider MQSeries client secutity, so that the client applications do not
have unrestricted access to resources on the server. There are two aspects to security
betweena dient application and its queue manager server: authentication and access
control.

Authentication
Authentication is described in Chapter 6 of the MQSeries Clients reference. There are
no spedal considerations for MPE /iX clients.

User ID and password

If a security exit is not defined on an MQSeties Client for MPE/iX, the values of two
environment vatiables MQ_USER_ID and MQ_PASSWORD will be transmitted to
the server and will be available to the setver security exit in the Channel definition
when itisinvoked. These values may be used to verify the identity of the MQSeries
client.

Note

Note that <myuserid> and <mypassword> must be in uppercase if the
MQSeries client is going to communicate with an MQSeries server on
0S/400.

POSIX Mode
1. Type export MQ_USER_ID=<myuserid> (without the <.>).
2. Type export MQ_PASSWORD=<mypassword> (without the <>).

Native Mode
1. Type :setvar MQ_USER_ID “myuserid” (including the).

2. Type :setvar MQ_PASSWORD “mypassword” (including the 7).

11

SECURITY

Access Control

Access control in MQSeries is based upon the user identifier associated with the
process making MQI calls. For MPE /iX dients, the process that issues the MQI calls
is the server Message (hannel Agent. The user identifier used by the server MCA is
that contained in the MCAU serldentifier field of the MQCD. The contents of
MCAU setldentifier are determined by the following:

e Anyvalues set by security exits
e MQ_USER_ID environment variable
e MCAUSER (in setver-connection channel definition)

e Default MCAUSER value (from SYSTEM.DEF.SVRCONN)
This value is used if no value is specified for MCAUSER when the server
channel is defined.

Depending upon the combination of settings of the above, MCAUserldentifier is set
to the appropriate value. If security exits are provided, MCAUserldentifier may be set
by the exit. Otherwise MCAUserldentifier is determined as shown in the following
table:

MQ Client ID Server channel Value Used Notes
MQ_USER_ID MCAUSER

Not Set Set MCAUSER 1

or Set

Set Blanks MQ_USER_ID 1

Not Set Blanks For MVS/ESA: The value used is the user ID

assigned to the channel initiator started task by
the MVS/ESA started procedures table. TCP/IP
(non-MVS/ESA): User ID from inetd.conf entty.

Not Set Not Set TCP/IP: User ID from inetd.conf entry. 2

or Set

Notes

1. ForWindows NT and UNIX setvers the MCAUSER from the
channel definition is changed to lowercase before being used. so
MCA user identifiers with one or more uppercase letters will not
work if placed in the MCAUSER field of the channel definition.
They will work howeverif theyare putin the dient environment
vatiable MQ_USER_ID and MACUSER is blank.

12

SECURITY

2. For MVS/ESA the channel user ID takes the value of
MCAU setldentifier as determined above. See the MQSeries for
MVS/ESA System Management Guide for mote information.

13

ENVIRONMENT VARIABLES

Chapter

MQSeries environment
variables

This chapter describes the environment variables that you can use with MQSeries
Client for MPE /iX MQI applications:

e MQCHLLIB

e MQCHLTAB

e MQ_PASSWORD

e MQSERVER

e MQCCSID

e MQ_USER_ID
MQSeries uses default values for those variables that you have not set. Update your
system profile to make a permanent change; issue the command from the command
line to make a change for this session only, or if you want one or more vatiables to
have a particular value dependent on the application running, you can add commands
toa command script file used by the application.
Note that only a single set of environment variables can be active at any one time.
MQCHLLIB

This holds the path to the folder containing the client channel definition table, on the
MQSeries client. If MQCHLLIB is not set, the path defaults to:

/vat /mqm/

Consider keeping this folder ona central file server to make administration easier.

14

ENVIRONMENT VARIABLES

Note

If you are using M(QSeries for MVS/ESA or OS/400 as your setver, the
client channel definition table file cannot be kept on these hosts.

To change the location of the dient channel definition table, type:

POSIX:
export MQCHLLIB=pathname

Native Mode:
:setvar MQCHLLIB “HFS pathname”

where “HFS pathname” is the POSIX pathname to the channel table, i.e.
“/var/mqm?”.

MQCHLTAB
This specifies the name of the client channel definition table. The default file name is
AMQCLCHL.TAB. Thisis found on the setver machine, in the directoty:

e ForOS/2, Windows 3.1 and Windows NT:
\mgm\ qmgrs\queuemanagername\@ipcc
e For UNIX systems:
/mqgmtop/qmgrs/ QUEUEMANAGERNAME /@ipcc

Note that queuemanagername is case sensitive for UNIX systems. For MVS/ESA
systems it is kept with all other object definitions on pageset zeto.

To point to a different client channel definition table, type:

POSIX:

export MQCHLTAB=filename.
Native Mode:

:setvar MQCHLTAB “filename”
MQSERVER

This isused to define a minimal channel. It specifies the location of the MQQSeries
server and the communication method to be used. Note that ConnectionName must
be a fully qualified network name.

To change the MQSERVER variable, type:

15

ENVIRONMENT VARIABLES

POSIX:
export MQSERVER=ChannelName/TCP/ConnectionName

Native Mode:
:setvat MQSERVER “ChannelName / TCP / ConnectionName”

ImporantNote

The second parameter, TCP, is case sensitive. It MUST be entered in
upper case!

If your application specifies a queue manager name on the MQCONN call, and this is

not the queue manager name spedified to the listener, the MQCONN call will fail. By

default MQSeries assumes that the channel will be connected to port 1414. You can

change this by:

Adding the port number in brackets as the last part of the ConnectionName:
ChannelName/TCP/ConnectionName (PortNumber)

Al MQGONN requests then attempt to use the channel you have defined.
Note

The MQSERVER environment variable takes priority over any dient
channel definition pointed to by MQCHLIIB and MQCHLTAB,
irrespective of any queue manager name specified in a MQCONN call.

MQCCSID

This specifies the coded character set number to be used and overrides the machine’s
configured CCSID.

To change the MQCCSID variable, type:

POSIX:
export MQCCSID=number

Native Mode:
:setvar MQCCSID “numbet”

16

ENVIRONMENT VARIABLES

Note

The default CCSID on the MPE /iX client is set to 850, a code page that
is supported by most M(QSeries servers.

17

DEFINING CHANNELS

Chapter

Defining channels

Creating one definition on the MPE/iX client and the other on

the server

Use MQSeries commands (MQSQ) to define the server connection channel on the
setver. OnMQSeries for OS/400 you can use MQSC and the CL commands. You
are limited to defining one simple channel on the MPE/iX client because MQSC is
not available on a machine where MQSeries has been installed asan MQSeries client
only.

On the server

Define a channel with your chosen name and a channel type of server connection.
This channel definition is kept in the channel definition table associated with the
queue manager running on the server.

For example:

DEFINE CHANNEL(CHAN1) CHLTYPE (SVRCONN)
TRPTYPE(TCP) + DESCR('Server connection to Client_1")

On the MQSeries client

You cannot use MQSC on the MQSeries client. However, when you require a simple
channel definition, without specifying all the attributes, you can use a single
environment vatiable, MQSERVER (see Chapter 6, “Using MQSeties environment
vatiables (MQSetup Control Panel).

A smple channel may be defined on MPE /iX as follows:

POSIX:
export MQSERVER=ChannelName/TCP/ConnectionName

Native Mode:
:setvat MQSERVER “ChannelName / TCP / ConnectionName”

ChannelName must be the same name as defined on the setver.

The second parameter, transport type, must be TCP (in upper case).

18

DEFINING CHANNELS

The ConnectionName is the name of the server machine or its IP address.
For example:

CHAN1/TCP /MCID66499
or:

CHAN1/TCP/9.204.56

On the MQSeries client, all MQCONN requests then attempt to use the channel you
have defined.

Note

The MQSERVER environment variable takes priority over any dient
channel definition pointed to by MQCHLLIB and MQCHLTAB.

Cancelling MQSERVER: To nullify MQSERVER and return to the dient
channel definition table pointed to by MQCHLLIB and MQCHLTAB, enter:

POSI X:
unset MQSERVER

Native Mode:
:deletevar MQSERVER

19

DEFINING CHANNELS

Creating both definitions on the server
On the server machine use MQSeries commands (MQSC) to define the channel. For
mote details about the MQSC refer to the MQSeties Command Reference.

On the server
Define the server connection and then define the client connection.

Defining the server connection
On the server machine, define a channel with your chosen name and a channel type of
server connection.

For example:

DEFINE CHANNEL(CHAN2) CHLTYPE (SVRCONN)
TRPTYPE(TCP) + DESCR('Server connection to Client_2')

This channel definition is kept in the channel definition table associated with the
queue manager running on the server.

Defining the client connection
Also on the setrver machine, define a channel with the same name and a channel type
of client connection.

The connection name (CONNAME) must be stated. Thisis the TCP/IP machine
name or network address of the server machine. Itis a good idea to specify the queue
manager name (QMNAME) to which you want your M(QSeries application, running
on the MPE /iX dient, to connect.

For example:
DEFINE CHANNEL(CHAN2) CHLTYPE (CLNTCONN)
TRPTYPE(TCP) + CONNAME (9.20.4.26) QUNAME (QM2)
DESCR('Client connection from Client_2")
For non-MVS/ESA systems this channel definition is kept in the client channel
definition table associated with the queue manager running on the server. This file is
called AMQULCHLTAB and isin the directory:
e ForOS§/2, and Windows NT(versions prior to MQSeries V5.1):
\mgm)\ gmgrs\queuemanagername\ @ipcc
e For Windows NT(MQSeries version V5.1):
\Program Files\M QSeries\ qmgrs\queuemanagername \@ipcc

e For UNIX systems:

DEFINING CHANNELS

/mgmtop/qmgrs/ QUEUEMANAGERNAME /@ipcc
Note

Note that queuemanagername is case sensitive for UNIX systems.
For MVS/ESA systems it is kept with all other object definitions on
pageset zeto.

On the MQSeries client

On the MQSeries client machine, use the environment vatriables MQCHLLIB and
MQCHLTAB to allow the MQSeries application to access the client channel
definition table on the setver (not a server on OS /400 or MVS/ESA).

M QCHLLIB specifies the path to the directory containing the channel definition
file. If not specified, the default used is DefaulfPrefix from the mqs.ini file.

Note

The channel definition file is not automatically created in the
DefanltPrefix directory. If you do not specify the MQCHLLIB
environment vatiable, you will have to copy the channel definition file
that you want the dient to use to the DefaulfPrefix directory.

M QCHLTAB specifies the name of the file to use. If not specified, the default client
channel definition table name (AMQUCLCHIL.TAB) is used.

To set the environment variables on MPE/iX, type:

POSIX:
export MQCHLTAB=AM QCLCHL.TAB

Native Mode:
:setvar MQCHLTAB “AMQCLCHL.TAB”

In many cases the MQCHLLIB and MQCHLTAB varnables might be used to point to
a dient channel definition table on a file setver that is used by many MQSeries clients.

Alternatively, or if this is not possible, you can copy the client channel definition table,
AMQCLCHL.TAB (a binary file) onto the MPE /iX dient machine and again use
MQCHLLIB and MQCHLTAB to specify where the client channel definition table is.

OnMVS/ESA, use the COMMAND function of the CSUTIL utility to make a client
channel definition file that can then be downloaded to the client machine usinga file-

21

DEFINING CHANNELS

transfer program. For details see the MQSeries for MVS/ESA System Management
Guide.

Note

If you use f7p to copy the file, remember to set binary mode; do not use
asdi or labels (tenex) mode

Note

The MQCHLLIB and MQCHLTAB environment variables are honored
by the MQSeries commands when defining client connection channels.
Therefore, for client connection channels only, you can use the
MQCHLLIB and MQCHLTAB environment variables to override the
default name and location, or both, of the generated client channel
definition table.

The client channel definition pointed to by MQCHLLIB and
MQCHLTAB may be overridden by the MQSERVER environment
vartiable.

USING THE Mal

Chapter

Using the message queue
interface (MQI)

When you wiite your MQSeries application, you need to be aware of the differences
between runningit in an MQSeries dient environment and running it in the full
MQSeries queue manager environment.

This chapter explains the things to consider with respect to MPE/iX clients.

Limiting the size of a message

The maximum message length in a channel definition can be used to limit the size of a
message allowed to be transmitted alonga dient connection. If any attempt is made
by an MQSeties application to use the MQPU'T call or the MQGET call witha
message larger than this, an error code is returned to the application.

The maximum message size that can be specified on MPE/iX is4 MB (4,194,304
bytes).

Choosing client or server coded character set identifier (CCSID)
The data passed across the MQI from the application to the client stub should be in
thelocal GCSID (coded character set identifier), encoded for the MQSeries client.

If the connected queue manager requires the data to be converted, this will be done by
the client support code.

The client code will assume that the character data crossing the MQI in the client is in
the CCSID configured for that machine. If this CCSID is an unsupported CCSID or is
not the required CGSID, it can be overfidden with the MQCCSID environment

vatiable, for example:

POSI X:
set MQCCSID=850

Native Mode:
setvar MQCCSID “850”

23

USING THE Mal

Set this in the profile and all MQI data will be assumed to be in codepage 850.

Note

This does not apply to application data in the message.

Controlling application in an MPE/iX environment

The MQSeries client enables you to start up more applications or work on something

else until an MQI call has been answered. But, should an application attempt to issue

a further MQI call before the previous one has been answered, the application will get
a retum code indicating that there is still a call in progress and the second call will fail.

Designing applications

When designing an application, consider what controls you need to impose duringan
MQI call because you need to ensure that the MQSeries application processing is not
disrupted in any way.

Using MQINQ

Some values queried using MQINQ will be modified by the client code. CCSID is set
to the client GCSID, not that of the queue manager. MaxMsglength is reduced if it is
restricted by the channel definition. Thiswill be the lower of:

e The value defined in the queue definition, or

o The value defined in the channel definition.

Using syncpoint coordination
Within MQSeries, one of the roles of the queue manager is syncpoint coordination

within an application. If the application has beenlinked to a client stub, then it can
issue MQCMIT and MQBACK, but there will be no syncpoint coordination.

Synchronization is limited to MQI resources only.

Triggering in the MPE/iX client environment

Triggeringis explained in detail in the MQSeries Application Programming Guide.
When usinga trigger monitor that runsin a MQSeries client environment, the
application that is started by the trigger monitor must be in the same MQSeries client
environment.

You must define the PROCESS definition on the server, as this is associated with the
queue that has triggering set on.

The trigger monitor provided runs in the MPE /iX POSIX environment only. To run
it, type:

24

USING THE Mal

runmqtmc [-m QmgrName] [-q InitQ]
in the POSIX shell.

The default is SYSTEM.DEFAULT.INITIATION.QUEUE on the default queue
manager. It calls programs for the appropmate trigger messages. This trigger monitor
supports the default application type and is the same as rumngtm except that it links
the client libraries.

The command sting, passed by the queue manager on the server to the trigger monitor
on the MPE /iX dient, is built as follows:

The command string, built by the trigger monitor, is as follows
1. Theapplicid from the relevant PROCESS definition

2. The MQTMC2 structure, enclosed in quotes, as got from the initiation
queue

3. Theenvrdata from the relevant PROCESS definition
applicid is the name of the program to run.

The parameter passed is the MQTMC2 character structure. A command string is
invoked which has this string, exactly as provided, in ‘quotes’, in order that the system
command will accept it as one parameter.

The trigger monitor will not look to see if there is another message on the initiation
queue until the completion of the application it has just started. If the application has
a lot of processing to do, this may mean that the trigger monitor cannot keep up with
the number of trigger messages arriving, You have two options:

e Have more trigger monitors running

¢ Runthe started applications in the background
If you choose to have more trigger monitors running you have control over the
maximum number of applications that can run at any one time. If you choose to mn
applications in the background, there is no restriction imposed by MQSerie. on the

number of applications that can run.

To run the started POSIX application in the background in an MPE /iX system, you
must put an ‘&’ at the end of the envrdata of the PROCESS definition.

LINKING APPLICATIONS

Chapter

Building applications for
MQSeries clients

Ifanapplicationis to run inan MPE /iX environment, you can write it in COBOL
(Native Mode) or C (POSIX). It must be linked with the appropsate library. It isalso
possible to call the Clibrary from Native Mode applications.

This chapter lists points to consider when runningan application in an MPE/iX
environment, and describes how to link your application code with the MQSeries
client code.

Running applications in the MQSeries environment
You can run an MQSeries application in both a full MQSeries environment and in an
MQSeries client environment without changing your code, providing:

o It doesnot need to connect to more than one queue manager concurrently

e The queue manager mame is not prefixed with an asterisk (*¥) onan
MQUCONN call

However, the libraries at link-edit time determine the environment your application
must run in.

When working in the MQSeries client environment, remember:
e Each application running in the MQSeries client environment hasits own
connections to servers. It will have one connection to every server it

requires, a connection being established with each MQCONN call the
application issues.

e Anapplication sends and gets messages synchronously.
e Alldata conversionis done by the server.

e Triggeringis supported.

LINKING APPLICATIONS

« Messages sent by MQSeries applications running on MQSeries clients
contribute to triggering in exactly the same way as any other messages, and
they can be used to trigger programs on the setver.

Channel exits
The channel exits available to the MQSeries Client for MPE./iX are:

e Send exit

e Receive exit

e Seccurity exit
These exits are available at both the dient and server ends of the channel
Remember, exits are not available to your application if you are using the
MQSERVER environment variable. Exits are explained in the MQSeries Distributed
queuing Guide.

The send and receive exit work together. There are several possible ways in which
you may choose to use them:

e Segmentingand reassemblinga message

e Compressingand decompressing data in a message
e Encayptingand dectypting user data

e Journaling each message sent and received

You can use the security exit to ensure that the MQSeries dient and server machines
are correctly identified, as well as to control access to each machine.

Linking C applications with the MQSeries client code

Having written your MQSeries application, you must link it to a queue manager. You
do this using the dient libraty file, which gives you access to queue managersona
different machine.

POSIX:
Clibrary: libmqicg.a
COBOL library: libmqibcg.a
Native Mode:
COBOL library: ; XL="COBM QXL”

27

CLIENT TO QUEUE MANAGER

Chapter

Running applications on
MPE/X clients

This chapter explains the various ways in which an application runningin an MPE /iX
client environment can connect to a queue manager. It covers the relationship of the
MQSERVER environment variable, and the role of the client channel definition file
created by MQSeries.

When an application runningin an MQSerties client environment issues an MQUONN
call, the dient code identifies how it is to make the connection:

1. Ifthe MQSERVER environment vanable is set, the channel it defines
will be used.

2. Ifthe MQCHLLIB and MQCHLTAB environment variables are set, the
client channel definition table they point to will be used.

3. Finally, if the environment variables are not set, the dient code searches
fora channel definition table whose path and name are established from
the DefanlfPrefix in the mqs.ini file. If this fails, the dient code will use
the paths:

e (OS/2: rootdrive:mqm\ AMQCLCHL.TAB
e UNIX systems: /var/mgm/ AMQCLCHL.TAB
e WindowsNT: rootdrive:mgqm\ AMQCLCHLTAB

where rootdrive is obtained from the
Software\IBM\MSeries\Current Version registry entry under
HKEY_LOCAIL_MACHINE. This valueis established when the
MQSeries client softwate isinstalled. Ifit is not found a value of ‘C is
used for rootdtive.

CLIENT TO QUEUE MANAGER

Notes

1. If the client code fails to find any of these, the MQCONN call will
fail.

2. The channel name established from either the first segment of the
MQSERVER variable or from the dient channel definition table, must
match the SVRCONN channel name defined on the server for the
MQUGONN call to succeed.

3. See “Migrating from MQSeties for OS/2 V2.0 and MQSeries for ATX
V2.1 or V2.2” in the M(Series ients reference if you receive a
MQRC_Q_MGR_NOT_AVAILABLE return code from your
application with an error message in the error log file of AMQ9517 -

File damaged.

Using MQSERVER

If you use the MQSERVER environment vatable to define the channel between your
MQSeries client machine and a server machine, thisis the only channel available to
your application and no reference is made to the client channel definition table. In
this situation, the ‘listening’ program that you have running on the server machine
determines the queue manager that your application will connect. It will be the same
queue manager as the listener program is connected to.

If the MQCONN request specifiesa queue manager other than the one the listener is
connected to, the MQCONN request fails with return code
MQRC_Q_MGR_NAME_ERROR.

Using DEFINE CHANNEL

If you use the MQSCDEFINE CHANNEL command, the details you provide are
placed in the dient channel definition table. Itis this file that the client code accesses,
in channel name sequence, to determine the channel an application will use.

The contents of the Name parameter of the MQCONN call determines what
processing will be cartied out at the server end.

Role of the client channel definition table
Refer to Chapter 11 of the MQSeries Clients reference for a detailed explamation of
client channel definition tables and how they work.

SOLVING PROBLEMS

Chapter

Solving Problems

MQSeries client for MPE/iX error logs, and error messages are discussed.

Emror messages with MQSeries clients

When an error occurs with an M(QSeries dient system, etror messages are put into the
error files associated with the server, if possible. If the error cannot be placed there,
the MQSeries client code attempts to place the error message in an error log on the
MQSeries client machine.

On MPE/iX, the error log can be found in the POSIX filesystem at
/var/mgm/AMQERRO1.LOG.

To view the contents of the logfile, use the

/MQM /PUB/opt/mgm/bin/runmqfmt utlity. Runmqfmt must be run from
the POSIX shell, and it expects to read the error log at
/var/mgm/AMQERRO1.LOG.

30

